4.7 Article

Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field

期刊

PLANT MOLECULAR BIOLOGY
卷 62, 期 4-5, 页码 593-609

出版社

SPRINGER
DOI: 10.1007/s11103-006-9041-y

关键词

Arabidopsis thaliana ecotypes; elevated [CO2]; FACE; transcript profiling; metabolite profiling

向作者/读者索取更多资源

Free Air [CO2] Enrichment (FACE) allows for plant growth under fully open-air conditions of elevated [CO2] at concentrations expected to be reached by mid-century. We used Arabidopsis thaliana ecotypes Col-0, Cvi-0, and WS to analyze changes in gene expression and metabolite profiles of plants grown in SoyFACE (http://www.soyface.uiuc.edu/), a system of open-air rings within which [CO2] is elevated to similar to 550 ppm. Data from multiple rings, comparing plants in ambient air and elevated [CO2], were analyzed by mixed model ANOVA, linear discriminant analysis (LDA) and data-mining tools. In elevated [CO2], decreases in the expression of genes related to chloroplast functions characterized all lines but individual members of distinct multi-gene families were regulated differently between lines. Also, different strategies distinguished the lines with respect to the regulation of genes related to carbohydrate biosynthesis and partitioning, N-allocation and amino acid metabolism, cell wall biosynthesis, and hormone responses, irrespective of the plants' developmental status. Metabolite results paralleled reactions seen at the level of transcript expression. Evolutionary adaptation of species to their habitat and intrinsic genetic plasticity seem to determine the nature of responses to elevated [CO2]. Irrespective of their underlying genetic diversity, and evolutionary adaptation to different habitats, a small number of common, predominantly stress-responsive, signature transcripts appear to characterize responses of the Arabidopsis ecotypes in FACE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据