4.4 Article

Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development

期刊

DEVELOPMENTAL DYNAMICS
卷 235, 期 11, 页码 2940-2948

出版社

WILEY
DOI: 10.1002/dvdy.20926

关键词

zebrafish; heart development; hemodynamics; confocal microscopy; image reconstruction; 4D imaging

资金

  1. NHLBI NIH HHS [5R01HL078694] Funding Source: Medline

向作者/读者索取更多资源

We report an accurate method for studying the functional dynamics of the beating embryonic zebrafish heart. The fast cardiac contraction rate and the high velocity of blood cells have made it difficult to study cellular and subcellular events relating to heart function in vivo. We have devised a dynamic three-dimensional acquisition, reconstruction, and analysis procedure by combining (1) a newly developed confocal slit-scanning microscope, (2) novel strategies for collecting and synchronizing cyclic image sequences to build volumes with high temporal and spatial resolution over the entire depth of the beating heart, and (3) data analysis and reduction protocols for the systematic extraction of quantitative information to describe phenotype and function. We have used this approach to characterize blood flow and heart efficiency by imaging fluorescent protein-expressing blood and endocardial cells as the heart develops from a tube to a multichambered organ. The methods are sufficiently robust to image tissues within the heart at cellular resolution over a wide range of ages, even when motion patterns are only quasiperiodic. These tools are generalizable to imaging and analyzing other cyclically moving structures at microscopic scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据