4.2 Article

Molecular cloning and characterization of the polyphenol oxidase gene from sweetpotato

期刊

MOLECULAR BIOLOGY
卷 40, 期 6, 页码 907-913

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0026893306060094

关键词

bioinformatic analysis; expression profile; polyphenol oxidase; RACE; sweetpotato

向作者/读者索取更多资源

Polyphenol oxidase is the enzyme responsible for enzymatic browning in sweetpotato that decreases the commercial value of sweetpotato products. Here we reported the cloning and characterization of a new cDNA encoding PPO from sweetpotato, designated as IbPPO (GeneBank accession number: AY822711). The full-length cDNA of IbPPO is 1984 bp with a 1767 bp open reading frame (ORF) encoding a 588 amino acid polypeptide with a calculated molecular weight of 65.7 kDa and theoretical pl of 6.28. The coding sequence of IbPPO was also directly amplified from the genomic DNA of sweetpotato that demonstrated that IbPPO was an intron-free gene. The computational comparative analysis revealed that IbPPO showed homology to other PPOs of plant origin and contained a 50 amino acid plastidial transit peptide at its N-terminal and the two conserved CuA and CuB copper-binding motifs in the catalytic region of IbPPO. A highly conserved serine-rich motif was firstly found in the transit peptides of plant PPO enzymes. Then the homology based structural modeling of IbPPO showed that IbPPO had the typical structure of PPO: the catalytic copper center was accommodated in a central four-helix bundle located in a hydrophobic pocket close to the surface. Finally, the results of the serniquantitative RT-PCR analysis of IbPPO in different tissues demonstrated that IbPPO could express in all the organs of sweetpotato including mature leaves, young leaves, the stems of mature leaves (petioles), the storage roots, and the veins but at different levels. The highest-level expression of IbPPO was found in the veins, followed by storage roots, young leaves and mature leaves; and the lowest-level expression of IbPPO was found in petioles. The present researches will facilitate the development of antibrown sweetpotato by genetic engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据