4.7 Review

The aureolic acid family of antitumor compounds:: structure, mode of action, biosynthesis, and novel derivatives

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 73, 期 1, 页码 1-14

出版社

SPRINGER
DOI: 10.1007/s00253-006-0511-6

关键词

streptomyces; polyketides; actinomycetes; glycosylation

向作者/读者索取更多资源

Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions. Mithramycin and chromomycins are the most representative members of the family, mithramycin being used as a chemotherapeutic agent for the treatment of several cancer diseases. For chromomycin and durhamycin A, antiviral activity has also been reported. The biosynthesis gene clusters for mithramycin and chromomycin A(3) have been studied in detail by gene sequencing, insertional inactivation, and gene expression. Most of the biosynthetic intermediates in these pathways have been isolated and characterized. Some of these compounds showed an increase in antitumor activity in comparison with the parent compounds. A common step in the biosynthesis of all members of the family is the formation of the tetracyclic intermediate premithramycinone. Further biosynthetic steps (glycosylation, methylations, acylations) proceed through tetracyclic intermediates which are finally converted into tricyclic compounds by the action of a monooxygenase, a key event for the biological activity. Heterologous expression of biosynthetic genes from other aromatic polyketide pathways in the mithramycin producer (or some mutants) led to the isolation of novel hybrid compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据