4.2 Article

Oral gene delivery:: Design of polymeric carrier systems shielding toward intestinal enzymatic attack

期刊

BIOPOLYMERS
卷 83, 期 4, 页码 327-336

出版社

WILEY
DOI: 10.1002/bip.20521

关键词

enzyme inhibitor; nanoparticles; enzymatic degradation; chitosan; aurintricarboxylic acid (ATA); Caco-2 cell line; therapeutic genes

向作者/读者索取更多资源

The gastrointestinal tract poses a variety of morphological and physiological barriers to the expression of target genes. The aim of this study was to evaluate the stability of cationic polymer/pDNA nanoparticles toward salts and enzymes of the intestinal fluid. Within this study, a chitosan-enzyme inhibitor conjugate has been generated and characterized. Based on this conjugate, nanoparticles with pDNA were generated to enhance transfection rate in oral gene delivery. The enzyme inhibitor aurintricarboxylic acid (ATA) was covalently bound to chitosan to improve the enzymatic stability of nanoparticles formed with this polymer and pDNA. Chitosan-ATA/pDNA nanoparticles showed a size of 98.5 +/- 26 nm and a zeta potential of -13.26 +/- 0.24 mV (n = 3-4). Stability studies with salt solution, lysozyme, DNase, and freshly collected porcine intestinal fluid showed that chitosan-ATA/pDNA nanoparticles are significantly (p < 0.05) more stable than unmodified chitosan/pDNA nanoparticles. Apart from improved stability, chitosan-ATA/pDNA nanoparticles showed a 2.6-fold higher transfection rate than chitosan/pDNA nanoparticles in the Caco-2 cell line, thus creating a promising carrier for orally administered therapeutic genes. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据