4.7 Article

Velocity correlations in dense gravity-driven granular chute flow

期刊

PHYSICAL REVIEW E
卷 74, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.74.051302

关键词

-

向作者/读者索取更多资源

We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk. The two-point velocity correlation function exhibits exponential decay for small to intermediate values of the separation between spheres. The correlation lengths identified by exponential fits to the data show nontrivial dependence on the averaging time Delta t used to determine grain velocities. We discuss the correlation length dependence on averaging time, incline angle, pile height, depth of the layer, system size, and grain stiffness and relate the results to other length scales associated with the rheology of the system. We find that correlation lengths are typically quite small, of the order of a particle diameter, and increase approximately logarithmically with a minimum pile height for which flow is possible, h(stop), contrary to the theoretical expectation of a proportional relationship between the two length scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据