4.7 Article

Endothelial nitric oxide synthase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo

期刊

DIABETES
卷 55, 期 11, 页码 3133-3141

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db06-0505

关键词

-

资金

  1. NHLBI NIH HHS [HL07439, HL079584, HL080499] Funding Source: Medline

向作者/读者索取更多资源

There is evidence that reactive nitrogen species are implicated in diabetic vascular complications, but their sources and targets remain largely unidentified. In the present study, we aimed to study the roles of endothelial nitric oxide synthase (eNOS) in diabetes. Exposure of isolated bovine coronary arteries to high glucose (30 mol/l D-glucose) but not to osmotic control mannitol (30 mmol/l) switched angiotensin II-stimulated prostacyclin (PGI(2))-dependent relaxation into a persistent vasoconstriction that was sensitive to either indomethacin, a cyclooxygenase inhibitor, or SQ29548, a selective thromboxane receptor antagonist. In parallel, high glucose, but not mannitol, significantly increased superoxide and 3-nitrotyrosine in PGI(2) synthase (PGIS). Concurrent administration of poly-ethylene-glycolated superoxide dismutase (SOD), L-nitroarginine methyl ester, or sepiapterin not only reversed the effects of high glucose on both angiotensin II-induced relaxation and PGI(2) release but also abolished high-glucose-enhanced PGIS nitration, as well as its association with eNOS. Furthermore, diabetes significantly suppressed PGIS activity in parallel with increased superoxide and PGIS nitration in the aortas of diabetic C57BL6 mice but had less effect in diabetic mice either lacking eNOS or overexpressing human SOD (hSOD(+/+)), suggesting an eNOS-dependent PGIS nitration in vivo. We conclude that diabetes increases PGIS nitration in vivo, likely via dysfunctional eNOS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据