4.8 Article

Intron length evolution in drosophila

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 23, 期 11, 页码 2203-2213

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msl094

关键词

Drosophila melanogaster; Drosophila simulans; intron; insertion; deletion; indel

向作者/读者索取更多资源

I present data on the evolution of intron lengths among 3 closely related Drosophila species, D. melanogaster, Drosophila simulans, and Drosophila yakuba. Using D. yakuba as an outgroup, I mapped insertion and deletion mutations in 148 introns (spanning similar to 30 kb) to the D. melanogaster and D. simulans lineages. Intron length evolution in the 2 sister species has been different: in D. melanogaster, X-linked introns have increased slightly in size, whereas autosomal ones have decreased slightly in size; in D. simulans, both X-linked and autosomal introns have decreased in size. To understand the possible evolutionary causes of these lineage- and chromosome-specific patterns of intron evolution, I studied insertion-deletion (indel) polymorphism and divergence in D. melanogaster. Small insertion mutations segregate at elevated frequencies and enjoy elevated probabilities of fixation, particularly on the X chromosome. In contrast, there is no detectable X chromosome effect on fixations in D. simulans. These findings suggest X chromosome-specific selection or biased gene conversion-gap repair favoring insertions in D. melanogaster but not in D. simulans. These chromosome- and lineage-specific patterns of indel substitution are not easily explained by existing general population genetic models of intron length evolution. Genomic data from D. melanogaster further suggest that the forces described here affect introns and intergenic regions similarly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据