4.4 Article

The role of scaffold proteins in MEK/ERK signalling

期刊

BIOCHEMICAL SOCIETY TRANSACTIONS
卷 34, 期 -, 页码 833-836

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BST0340833

关键词

growth factor; IQGAP1; kinase suppressor of Ras (KSR); mitogen-activated protein kinase (MAPK); mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase (MEK); scaffold

向作者/读者索取更多资源

Signal transduction networks allow cells to recognize and respond to changes in the extracellular environment. All eukaryotic cells have MAPK (mitogen-activated protein kinase) pathways that participate in diverse cellular functions, including differentiation, survival, transformation and movement. Five distinct groups of MAPKs have been characterized in mammals, the most extensively studied of which is the Ras/Raf/MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]/ERK cascade. Numerous stimuli, including growth factors and phorbol esters, activate MEK/ERK signalling. How disparate extracellular signals are translated by MEK/ERK into different cellular functions remains obscure. originally identified in yeast, scaffold proteins are now recognized to contribute to the specificity of MEK/ERK pathways in mammalian cells. These scaffolds include KSR (kinase suppressor of Ras), beta-arrestin, MEK partner-1, Sef and IQGAP1. Scaffolds organize multiprotein signalling complexes. This targets MEK/ERK to specific substrates and facilitates communication with other pathways, thereby mediating diverse functions. The adaptor proteins regulate the kinetics, amplitude and localization of MEK/ERK signalling, providing an efficient mechanism that enables an individual extracellular stimulus to promote a specific biological response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据