4.7 Review

Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance

期刊

CARDIOVASCULAR RESEARCH
卷 72, 期 2, 页码 210-219

出版社

OXFORD UNIV PRESS
DOI: 10.1016/j.cardiores.2006.07.010

关键词

cardiac ischemia; mitochondrial respiration; uncoupling proteins; reactive oxygen species; mitochondrial depolarization

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Modest depolarization of the mitochondrial inner membrane potential is known to attenuate mitochondrial reactive oxygen species generation. Transient pharmacologic uncoupling of mitochondrial oxidative phosphorylation results in modest depolarization of the mitochondrial membrane potential and confers protection against subsequent cardiac ischemia-reperfusion injury. Whether cardiac mitochondria have an innate capacity to temporally self-modulate their membrane potential as a possible adaptive mechanism in the context of cardiac ischemia and early reperfusion is supported by emerging data and is an intriguing concept that warrants further investigation. The objective of this review is to explore the various mechanisms whereby mitochondrial depolarization can be evoked in the context of both cardiac ischemia and reperfusion and in response to the cardioprotective program of ischemic preconditioning. The potential regulatory pathways orchestrating this biological perturbation of mitochondrial function are explored from the level of signal transduction to potential transcription-mediated modulations of nuclear-encoded mitochondrial inner membrane proteins, emphasizing the potential function of the mitochondrial uncoupling proteins. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据