3.8 Article Proceedings Paper

Self-consistent open-celled metal foam model for thermal applications

期刊

JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
卷 128, 期 11, 页码 1194-1203

出版社

ASME
DOI: 10.1115/1.2352787

关键词

open-celled; metal foam; thermal conductivity; geometric model; tomography

向作者/读者索取更多资源

Many engineering applications require thermal cycling of granular materials. Since these materials generally have poor effective thermal conductivity various techniques have been proposed to improve bed thermal transport. These include insertion of metal foam with the granular material residing in the interstitial space. The use of metal foam introduces a parasitic thermal capacitance, disrupts packing, and reduces the amount of active material. In order to optimize the combined high porosity metal foam-granular material matrix and study local thermal nonequilibrium, multiple energy equations are required. The interfacial conductance coefficients, specific interface area, and the effective thermal conductivities of the individual components, which are required for a multiple energy equation analysis, are functions of the foam geometry. An ideal three-dimensional geometric model of open-celled Duocell(R) foam is proposed. Computed tomography is used to acquire foam cell and ligament diameter distribution, ligament shape, and specific surface area for a range of foam parameters to address various shortcomings in the literature. These data are used to evaluate the geometric self-consistency of the proposed geometric model with respect to the intensive and extensive geometry parameters. Experimental thermal conductivity data for the same foam samples are acquired and are used to validate finite element analysis results of the proposed geometric model. A simple relation between density and thermal conductivity ratio is derived using the results. The foam samples tested exhibit a higher dependence on relative density and less dependence on interstitial fluid than data in the literature. The proposed metal foam geometric model is shown to be self-consistent with respect to both its geometric and thermal properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据