4.7 Article

Cyclic modeling of FRP-confined concrete with improved ductility

期刊

CEMENT & CONCRETE COMPOSITES
卷 28, 期 10, 页码 959-968

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2006.07.009

关键词

concrete; confinement; constitutive modeling; cyclic loading; ductility; FRP

向作者/读者索取更多资源

Confinement by fiber reinforced polymer (FRP) wraps can significantly enhance strength and ductility of concrete columns. Behavior of FRP-confined concrete in uniaxial compression can be characterized by its bilinear stress-strain and unique dilation properties. A number of models have in recent years been developed to capture these characteristics under monotonic loading. None, however, have addressed the cyclic response of FRP-confined concrete. A total of 24 FRP-confined concrete stub specimens were tested in uniaxial compression under different levels of loading and unloading, with different fiber type, wrap thickness, and loading patterns. Based on a regression analysis of test results, a constitutive model is developed that includes cyclic rules for loading and unloading, plastic strains, and stiffness and strength degradations. The proposed model is validated by comparing analytical predictions with experimental results of an independent test series. Good agreement was shown between the analysis and experiments, confirming the ability of the model to predict the cyclic behavior of FRP-confined concrete. The model could be easily implemented in a fiber element model for flexural analysis of cyclic loaded beam-columns in conjunction with a strain gradient approach. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据