4.5 Article

The scaling of winner-takes-all accuracy with population size

期刊

NEURAL COMPUTATION
卷 18, 期 11, 页码 2719-2729

出版社

M I T PRESS
DOI: 10.1162/neco.2006.18.11.2719

关键词

-

向作者/读者索取更多资源

Empirical studies seem to support conflicting hypotheses with regard to the nature of the neural code. While some studies highlight the role of a distributed population code, others emphasize the possibility of a single-best-cell readout. One particularly interesting example of single-best-cell readout is provided by the winner-takes-all (WTA) approach. According to the WTA, every cell is characterized by one particular preferred stimulus, to which it responds maximally. The WTA estimate for the stimulus is defined as the preferred stimulus of the cell with the strongest response. From a theoretical point of view, not much is known about the efficiency of single-best-cell readout mechanisms, in contrast to the considerable existing theoretical knowledge on the efficiency of distributed population codes. In this work, we provide a basic theoretical framework for investigating single-best-cell readout mechanisms. We study the accuracy of the WTA readout. In particular, we are interested in how the WTA accuracy scales with the number of cells in the population. Using this framework, we show that for large neuronal populations, the WTA accuracy is dominated by the tail of the single-cell-response distribution. Furthermore, we find that although the WTA accuracy does improve when larger populations are considered, this improvement is extremely weak compared to other types of population codes. More precisely, we show that while the accuracy of a linear readout scales linearly with the population size, the accuracy of the WTA readout scales logarithmically with the number of cells in the population.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据