4.3 Article

Charge fluctuations in geometrically frustrated charge ordering system

期刊

出版社

PHYSICAL SOC JAPAN
DOI: 10.1143/JPSJ.75.114707

关键词

charge order; geometrical frustration; molecular conductors; transition metal oxides; exact diagonalization; extended Hubbard model

向作者/读者索取更多资源

Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V, and that of next-nearest neighbor V-2, and (b) two-dimensional square lattice with V, along the squares and V2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V-1 similar or equal to 2V(2) for case (a) and V-1 similar or equal to V-2 for case (b), resulting in a robust metallic phase even when the interaction strengths are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical con-elation functions. Comparison of such features between the two models is discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据