4.5 Article

A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 24, 期 11, 页码 2059-2071

出版社

WILEY
DOI: 10.1002/jor.20273

关键词

human mesenchymal stem cells; subculture; osteogenic differentiation; regulatory factors; proteome analysis

向作者/读者索取更多资源

Although previous studies have reported the effects of extensive subculturing on proliferation rates and osteogenic potential of human mesenchyrnal stem cells (hMSCs), the results remain controversial. The aim of our study was to characterize the proliferation and osteogenic potential of hMSCs during serial subculture, and also to identify proteins that are differentially regulated in hMSCs during serial subculture and osteogenic differentiation using proteome analysis. Here we show that the proliferation and osteogenic capacity of hMSCs decrease during serial subculturing. Several proteins were shown to be differentially regulated during serial subculture; among these the expression of T-complex protein 1 a subunit (TCP-1 alpha), a protein known to be associated with cell proliferation, cell cycle, morphological changes, and apoptosis, gradually decreased during serial subculture. Among proteins that were differentially regulated during osteogenic differentiation, chloride intracellular channel 1 (CLIC1) was downregulated only during the early passages eukaryotic translation elongation factor, and acidic ribosomal phosphoprotein PO was downregulated during the middle passages, while annexin V, LIM, and SH3 domain protein 1 (LASP-1), and 14-3-3 protein gamma (YWHAG) were upregulated during the later passage. These studies suggest that differentially regulated passage-specific proteins may play a role in the decrease of osteogenic differentiation potential under serial subculturing. (c) 2006 Orthopaedic Research Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据