4.5 Article

Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor

期刊

MOLECULAR PHARMACOLOGY
卷 70, 期 5, 页码 1534-1541

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.106.023911

关键词

-

资金

  1. NCI NIH HHS [CA94829] Funding Source: Medline

向作者/读者索取更多资源

Although trastuzumab has been successfully used in patients with HER2-overexpressing metastatic breast cancer, resistance is a common problem that ultimately culminates in treatment failure. In light of the importance of Akt signaling in trastuzumab's antitumor action, we hypothesized that concurrent inhibition of Akt could enhance trastuzumab sensitivity and moreover reverse the resistant phenotype in HER2-positive breast cancer cells. Based on our finding that celecoxib mediates antitumor effects through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1)/Akt signaling independently of cyclooxygenase-2 (COX-2), we used celecoxib as a scaffold to develop a COX-2-inactive PDK-1 inhibitor, 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1-Hpyrazol-1-yl]phenyl]-acetamide (OSU-03012). Here, we investigated the effect of OSU-03012 on trastuzumab-mediated apoptosis in four breast cancer cell lines with different HER2 expression and trastuzumab-resistance status, including MDAMB-231, BT474, SKBR3, and insulin-like growth factor-I receptor-overexpressing SKBR3 (SKBR3/IGF-IR). Effects of trastuzumab and OSU-03012, individually or in combination, on cell viability and changes in pertinent biomarkers including HER2 expression, phosphorylation of Akt, p27(kip1), and the PDK-1 substrate p70(S6K) were assessed. OSU-03012 alone was able to trigger apoptosis in all cell lines with equal potency (IC50 = 3-4 mu M), suggesting no cross-resistance with trastuzumab. Medium dose-effect analysis indicates that OSU-03012 potentiated trastuzumab's antiproliferative effect in HER2-positive cells, especially in SKBR3/IGF-IR cells, through the down-regulation of PDK-1/Akt signaling. This synergy, however, was not observed in HER2-negative MDA-MB-231 cells. This combination treatment represents a novel strategy to increase the efficacy of trastuzumab and to overcome trastuzumab resistance in the treatment of HER2-positive breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据