4.5 Article

Modulation of pro- and antiapoptotic molecules in double-positive (CD4+ CD8+) thymocytes following dexamethasone treatment

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.106.108480

关键词

-

向作者/读者索取更多资源

Glucocorticoids play a role in regulation of T lymphocytes homeostasis and development. In particular, glucocorticoid treatment induces massive apoptosis of CD4(+)CD8(+) double-positive (DP) thymocytes. This effect is due to many mechanisms, mainly driven by modulation of gene transcription. To find out which genes are modulated, we analyzed DP thymocytes treated for 3 h with dexamethasone (a synthetic glucocorticoid) by global gene expression profiling. Results indicate modulation of 163 genes, also confirmed by either RNase protection assay or real-time polymerase chain reaction. In particular, dexamethasone caused down-regulation of genes promoting DP thymocyte survival (e.g., Notch1, suppressor of cytokine signaling 1, and inhibitor of DNA binding 3) or modulation of genes activating cell death through the ceramide pathway (UDP-glucose ceramide glucosyltransferase, sphingosine 1-phosphate phosphatase, dihydroceramide desaturase, isoform 1, and G protein-coupled receptor 65) or through the mitochondrial machinery. Among the latter, there are Bcl-2 family members (Bim, Bfl-1, Bcl-xL, and Bcl-x beta), genes involved in the control of redox status (thioredoxin reductase, thioredoxin reductase inhibitor, and NADP(+)-dependent isocitrate dehydrogenase) and genes belonging to Tis11 family that are involved in mRNA stability. Our study suggests that dexamethasone treatment of DP thymocytes modulates several genes belonging to apoptosis-related systems that can contribute to their apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据