4.7 Article

Analytical and numerical study on the pillar rockbursts mechanism

期刊

ROCK MECHANICS AND ROCK ENGINEERING
卷 39, 期 5, 页码 445-467

出版社

SPRINGER WIEN
DOI: 10.1007/s00603-005-0075-2

关键词

cusp type catastrophe theory; numerical simulation; rockburst

向作者/读者索取更多资源

Based on cusp-type catastrophe theory, a sample rock-rock model for studying the pillar rockburst mechanism is presented in this paper. It is shown that the stiffness ratio, K, of the roof and floor to the pillar plays an important role in the outbreak of instability. Additionally, simple formulae for the deformation jump and the energy release are derived. Based on the assumption that there exists a proportional relationship between the number of microseismic events and microfractured elements, the theoretical microseismic event rate produced by the double rock sample, loaded in series under uniaxial compression, is obtained. Using a newly developed numerical code, RFPA(2D), the progressive failure process and associated microseismic behavior of the twin rock samples are simulated, which shows that the spatial distribution of microseismic events develops progressively from disorder at the initial loading stage to order prior to the main shock. The numerically simulated results also confirm that a soft roof and floor promote an unstable failure or collapse of pillars, while a stiff roof and floor can lead to a stable failure of pillars. Additionally, the simulated results reproduce the deformation jump and the energy release that occur during a pillar rockburst. It is demonstrated that the proposed model properly simulates the pillar failure process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据