4.6 Article

Electronic structure and optical properties of layered perovskites Sr2MO4 (M = Ti, V, Cr, and Mn):: An ab initio study

期刊

PHYSICAL REVIEW B
卷 74, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.205112

关键词

-

向作者/读者索取更多资源

A series of layered perovskites Sr2MO4 (M=Ti, V, Cr, and Mn) is studied by ab initio calculations within generalized gradient approximation (GGA) and GGA+U schemes. The total energies in different magnetic configurations, including the nonmagnetic, ferromagnetic, the layered antiferromagnetic with alternating ferromagnetic plane, and the staggered in-plane antiferromagnetic (AFM-II) order, are calculated. It is found that Sr2TiO4 is always a nonmagnetic band insulator. For Sr2MnO4, both GGA and GGA+U calculations show that the insulating AFM-II state has the lowest total energy among all the considered configurations. For M=V and Cr, the GGA is not enough to give out the insulating AFM-II states and including the on-site electron-electron correlation effect U is necessary and efficient. The AFM-II state will have the lowest total energy in both cases when U is larger than a critical value. Further, the optical conductivity spectra are calculated and compared with the experimental measurements to show how well the ground state is described within the GGA or GGA+U. The results indicate that U is overestimated in Sr2VO4 and Sr2CrO4. To make up such a deficiency of GGA+U, the contributions from proper changes in the ligand field, acting cooperatively with U, are discussed and shown to be efficient in Sr2CrO4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据