4.6 Article

Brain site-specific gene expression analysis in Alzheimer's disease patients

期刊

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION
卷 36, 期 11, 页码 820-830

出版社

WILEY
DOI: 10.1111/j.1365-2362.2006.01722.x

关键词

Alzheimer's disease; MAP1B; microtubules; neurodegeneration; tau

向作者/读者索取更多资源

Background Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is characterized by a progressive loss of higher cognitive functions. The brain of an individual with AD exhibits extracellular senile plaques (SPs) of aggregated amyloid-beta peptide (A beta) and intracellular neurofibrillary tangles (NFTs). Given the critical role of neuronal transport of both proteins and organelles, it is not surprising that perturbation of microtubule-based transport may play a major role in the pathogenesis of AD. Materials and methods We used the cDNA subtraction methodology and in vitro neural cell culture analyses to study the meaning of the brain site-specific gene expression pattern in cerebral tissue obtained from AD patients and also from control subjects at autopsy. Results We observed that cytoskeleton-associated proteins were down-regulated in AD subjects. We also noted an altered expression of the microtubule-associated protein 1B (MAP1B), the heat-shock protein (HSP)-90 (a key chaperone molecule), the tripartite motif-containing proteins (TRIM)-32/37 (an anti apoptotic enzyme with ubiquitin-protein ligase activity) and the Reticulon-3 (a modulator of the amyloid-precursor-protein (APP) cleavage) in AD brains. Additional molecular- and cell-biological studies revealed that small interfering RNA (siRNA)-mediated down-regulation of MAP1B expression leads to neuronal cell death in vitro. Conclusions Altered expression of MAP1B, HSP90, TRIM32/37 and Reticulon-3 provides new clues by which the ubiquitin-proteasome-, the protein-chaperon- and the APP-processing systems are disturbed in AD, thus, leading to neuritic amyloid plaques and neurofibrillary tangles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据