4.8 Article

Combined topographical and chemical micropatterns for templating neuronal networks

期刊

BIOMATERIALS
卷 27, 期 33, 页码 5734-5739

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.07.021

关键词

neural network; micropatterning; cell culture; photolithography; bioelectronic interface

向作者/读者索取更多资源

In vitro neuronal networks with geometrically defined features are desirable for studying long-term electrical activity within the neuron assembly and for interfacing with external microelectronic circuits. In standard cultures, the random spatial distribution and overlap of neurites makes this aim difficult; hence, many recent efforts have been made on creating patterned cellular circuits. Here, we present a novel method for creating a planar neural network that is compatible with optical devices. This method combines both topographical and chemical micropatterns onto which neurons can be cultured. Compared to other reported patterning techniques, our approach and choice of template appears to show both geometrical control over the formation of specific neurite connections at low plating density and compatibility with microelectronic circuits that stimulate and record neural activity. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据