4.7 Article

Expressed peptide tags: An additional layer of data for genome annotation

期刊

JOURNAL OF PROTEOME RESEARCH
卷 5, 期 11, 页码 3048-3058

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr060134x

关键词

mass spectrometry; proteomics; shotgun proteomics; six-frame translation; genome annotation; expressed peptide tags

向作者/读者索取更多资源

While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here, we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six-frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well-annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed a high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well-annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller subdatabases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While similar to 76% of Phytophthora EPTs supported the current annotation, a portion of them (7.7% and 12.9% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据