4.6 Article

Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 95, 期 4, 页码 744-753

出版社

WILEY
DOI: 10.1002/bit.21035

关键词

novel micro-bioreactor; scale-down; oscillatory flow mixing; biomass production; fermentations; Saccharomyces cerevisiae

向作者/读者索取更多资源

The experimental performance of a novel micro-bioreactor envisaged for parallel screening and development of industrial bioprocesses has been tested in this work. The micro-bioreactor with an internal volume of 4.5 mL is operated under oscillatory flow mixing (OFM), where a controllable mixing and mass transfer rates are achieved under batch or continuous laminar flow conditions. Several batch fermentations with a flocculent Saccharomyces cerevisiae strain were carried out at initial glucose concentrations (S-0) range of similar to 5-20 g/L and compared to yeast growth kinetics in a stirred tank (ST) bioreactor. Aerobic fermentations were monitored ex situ in terms of pH, DO, glucose consumption, and biomass and ethanol production (wherever applicable). An average biomass production increase of 83% was obtained in the micro-bioreactor when compared with the ST, with less 93.6% air requirements. It also corresponded to a 214% increase on biomass production when compared with growth in a shaken flask (SF) at S-0= 20 g/L. Further anaerobic fermentations at the same initial glucose concentration ranges gave the opportunity to use state-of-the-art fiber optics technology for on-line and real-time monitoring of this bioprocess. Time profiles of biomass concentration (measured as optical density (OD)) were very similar in the ST bioreactor and in the micro-bioreactor, with a highly reproducible yeast growth in these two scale-down platforms. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据