4.6 Article

Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 39, 期 21, 页码 4688-4694

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/39/21/028

关键词

-

向作者/读者索取更多资源

Nanocrystalline Ni0.5Zn0.5Fe2O4 spinel ferrite with a grain size of 50 nm was prepared by using the ceramic method. The grain size was further reduced to 14 nm by milling the as-prepared ferrite particles in a high-energy ball mill. From the impedance spectroscopy studies we have observed that the dc electrical conductivity increases upon milling. Furthermore, the cation distribution data, as obtained from the in-field Mossbauer and extended x-ray absorption fine structure measurements, suggested a decrease in the conductivity for the milled sample. The increase in conductivity of the milled sample is, therefore, attributed to conduction by the oxygen vacancies created by mechanical milling. The higher values obtained for the activation energy for conduction are also evidence for the oxygen vacancy conduction. The increase in Neel temperature from 573 to 611K on reducing the grain size from 50 to 14 nm has been explained based on the changes in the cation distribution. The observed increase in the coercivity of the milled sample has been attributed to surface anisotropy of increasing number of ions on the surface. The Mossbauer spectra show canted spin structure for the milled samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据