4.8 Article

Modeling dual pathways for the metazoan spindle assembly checkpoint

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0603174103

关键词

kinetochore; mathematical modeling; signal transduction; concentration gradients

向作者/读者索取更多资源

Using computational modeling, we investigate mechanisms of signal transduction. We focus on the spindle assembly checkpoint, where a single unattached kinetochore is able to signal to prevent cell cycle progression. The inhibitory signal switches off rapidly once spindle microtubules have attached to all kinetochores. This requirement tightly constrains the possible mechanisms. Here we investigate two possible mechanisms for spindle checkpoint operation in metazoan cells, both supported by recent experiments. The first involves the free diffusion and sequestration of cell cycle regulators. This mechanism is severely constrained both by experimental fluorescence recovery data and by the large volumes involved in open mitosis in metazoan cells. By using a simple mathematical analysis and computer simulation, we find that this mechanism can generate the inhibition found in experiment but likely requires a two-stage signal amplification cascade. The second mechanism involves spatial gradients of a short-lived inhibitory signal that propagates first by diffusion but then primarily by active transport along spindle microtubules. We propose that both mechanisms may be operative in the metazoan spindle assembly checkpoint, with either able to trigger anaphase onset even without support from the other pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据