4.8 Article

Spider toxins activate the capsaicin receptor to produce inflammatory pain

期刊

NATURE
卷 444, 期 7116, 页码 208-212

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature05285

关键词

-

资金

  1. NIAMS NIH HHS [R01 AR051219-03, R01 AR051219] Funding Source: Medline

向作者/读者索取更多资源

Bites and stings from venomous creatures can produce pain and inflammation as part of their defensive strategy to ward off predators or competitors(1,2). Molecules accounting for lethal effects of venoms have been extensively characterized, but less is known about the mechanisms by which they produce pain. Venoms from spiders, snakes, cone snails or scorpions contain a pharmacopoeia of peptide toxins that block receptor or channel activation as a means of producing shock, paralysis or death(3-5). We examined whether these venoms also contain toxins that activate ( rather than inhibit) excitatory channels on somatosensory neurons to produce a noxious sensation in mammals. Here we show that venom from a tarantula that is native to the West Indies contains three inhibitor cysteine knot (ICK) peptides that target the capsaicin receptor (TRPV1), an excitatory channel expressed by sensory neurons of the pain pathway(6). In contrast with the predominant role of ICK toxins as channel inhibitors(5,7), these previously unknown 'vanillotoxins' function as TRPV1 agonists, providing new tools for understanding mechanisms of TRP channel gating. Some vanillotoxins also inhibit voltage-gated potassium channels, supporting potential similarities between TRP and voltage-gated channel structures. TRP channels can now be included among the targets of peptide toxins, showing that animals, like plants ( for example, chilli peppers), avert predators by activating TRP channels on sensory nerve fibres to elicit pain and inflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据