4.6 Article

DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 110, 期 44, 页码 12312-12320

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp063468i

关键词

-

向作者/读者索取更多资源

The reaction enthalpies related to the individual steps of two phenolic antioxidants action mechanisms, single electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET), for 30 meta and para-substituted phenols (ArOH) were calculated using DFT/B3LYP method. These mechanisms represent the alternative ways to the extensively studied hydrogen atom transfer (HAT) mechanism. Except the comparison of calculated reaction enthalpies with available experimental and/or theoretical values, obtained enthalpies were correlated with Hammett constants. We have found that electron-donating substituents induce the rise in the enthalpy of proton dissociation (PDE) from ArOH+center dot radical cation (second step in SET-PT) and in the proton affinities of phenoxide ions ArO- reaction enthalpy of the first step in SPLET). Electron-withdrawing groups cause the increase in the reaction enthalpies of the processes where electron is abstracted, i.e., in the ionization potentials of ArOH (first step in SET-PT) and in the enthalpy of electron transfer from ArO- (second step in SPLET). Found results indicate that all dependences of reaction enthalpies on Hammett constants of the substituents are linear. The calculations of liquid-phase reaction enthalpies for several parasubstituted phenols indicate that found trends hold also in water, although substituent effects are weaker. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据