4.6 Article

Molecular heterosis of prion protein β-oligomers -: A potential mechanism of human resistance to disease

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 45, 页码 34171-34178

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M606606200

关键词

-

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

The gene encoding prion protein is polymorphic in human populations, with over 40% of native Europeans, for example, being heterozygous for the Met-129 and Val-129 alleles. The polymorphism affects both the incidence and the clinical presentation of a range of prion diseases, with heterozygotes generally showing the highest levels of resistance. It has been suggested that an earlier epidemic of prion diseases exerted balancing selection on the two alleles, and we have previously demonstrated that the two encoded proteins have potentially compensating tendencies to form amyloid and soluble beta-oligomers, respectively, in vitro. More strikingly, here we demonstrate that mixed oligomers, composed of both allelic forms, show an extreme sluggishness in converting to amyloid in comparison with oligomers homogenous for either allele. It may be that this example of molecular heterosis in vitro provides the basis for maintenance of the polymorphism in the population and that beta-oligomers represent a form of PrP sequestered from pathogenic amyloid formation in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据