4.8 Article

Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene

期刊

PHYSICAL REVIEW LETTERS
卷 97, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.196804

关键词

-

向作者/读者索取更多资源

We discuss the effect of certain types of static disorder, like that induced by curvature or topological defects, on the quantum correction to the conductivity in graphene. We find that when the intervalley scattering time is long or comparable to tau(phi), these defects can induce an effective time-reversal symmetry breaking of the Hamiltonian associated to each one of the two valleys in graphene. The phenomenon suppresses the magnitude of the quantum correction to the conductivity and may result in the complete absence of a low-field magnetoresistance, as recently found experimentally. Our work shows that a quantitative description of weak localization in graphene must include the analysis of new regimes, not present in conventional two-dimensional electron gases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据