4.5 Article

Outward radial diffusion driven by losses at magnetopause

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JA011657

关键词

-

向作者/读者索取更多资源

[1] Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October-December 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据