4.7 Article

Single chain in mean field simulations:: Quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2364506

关键词

-

向作者/读者索取更多资源

The description of fluctuations by single chain in mean field (SCMF) simulations is discussed and the results of this particle-based self-consistent field technique are quantitatively compared to Monte Carlo simulations of the same discretized Edwards-Hamiltonian providing exact reference data. In SCMF simulations one studies a large ensemble of noninteracting molecules subjected to real, external fields by Monte Carlo simulations. The external fields approximate nonbonded, instantaneous interactions between molecules. In the self-consistent mean field theory the external fields are static and fluctuation effects are ignored. In SCMF simulations, the external fields fluctuate since they are frequently recalculated from the instantaneous density distribution of the ensemble of molecules. In the limit of infinitely high density or instantaneous update of the external fields, the SCMF simulation method accurately describes long-wavelength fluctuations. At high but finite updating frequency the accuracy depends on the discretization of the model. The accuracy is illustrated by studying the single chain structure and intermolecular correlations in polymer melts, and fluctuation effects on the order-disorder transition of symmetric diblock copolymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据