4.7 Article

Peroxynitrite and myocardial contractility: In vivo versus in vitro effects

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 41, 期 10, 页码 1606-1618

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2006.08.023

关键词

peroxynitrite; adrenergic (ant)agonists; contractile function; heart failure; nitric oxide; isolated myocytes; nitroxyl (HNO); Angeli's salt

资金

  1. NHLBI NIH HHS [HL-47511, P50-HL52307, HL075265] Funding Source: Medline

向作者/读者索取更多资源

Generation of peroxynitrite (ONOO-) as a result of altered redox balance has been shown to affect cardiac function; however, inconsistencies in the data exist, particularly for myocardial contractility. The hypothesis that the cardiac impact of ONOO- formation depends on its site of generation, intravascular or intramyocardial, was examined. Cardiac contractility was assessed by pressure-volume analysis to delineate vascular versus cardiac changes on direct infusion of ONOO- into the right atria of conscious dogs both with normal cardiac function and in heart failure. Additionally, ONOO- was administered to isolated murine cardiomyocytes to mimic in situ cardiac generation. When infused in vivo, ONOO had little impact on inotropy but led to systemic arterial dilation, likely as a result of rapid decomposition to NO2- and NO3-. In contrast, infused ONOO- was long lived enough to abolish beta-adrenergic (dobutamine)-stimulated contractility/relaxation, most likely through catecholamine oxidation to aminochrome. When administered to isolated murine cardiomyocytes, ONOO- induced a rapid reduction in sarcomere shortening and whole cell calcium transients, although neither decomposed ONOO- or NaNO2 had any effect. Thus, systemic generation of ONOO- is unlikely to have primary cardiac effects, but may modulate cardiac contractile reserve, via blunted beta-adrenergic stimulation, and vascular tone, as a result of generation of NO2- and NO3. However, myocyte generation of ONOO- may impair contractile function by directly altering Ca2+ handling. These data demonstrate that the site of generation within the cardiovascular system largely dictates the ability of ONOO- to directly or indirectly modulate cardiac pump function. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据