4.7 Article

Dynamic behavior of a spring-powered micronozzle needle-free injector

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 491, 期 1-2, 页码 91-98

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2015.05.067

关键词

Spring-powered needle-free injectors; Jet injectors, micronozzle; Transdermal delivery; Insulin

资金

  1. Brovedani Group

向作者/读者索取更多资源

Conventional injection is still the leading method to deliver macromolecular therapeutics. Needle injection is considered a low compliance administration strategy, principally due to pain and needle phobia. This has fostered the research on the development of alternative strategies to circumvent the skin barrier. Among needle-free drug delivery methods, jet injection is an old strategy with great potential not yet completely disclosed. Here, the design, engineering and dynamic behavior of a novel spring-powered micronozzle needle-free injector is presented. Fluid mechanics was first studied in air to calculate jet force and speed as well as injection duration in different conditions. Polyacrylamide gel was used to simulate a soft tissue and to investigate the jet evolution over time of different injected doses. Finally, ex vivo characterization was carried out on pig skin. Results evidenced a direct dependence of the force, velocity, and duration with the injection volume. The model material allowed individuating the different steps of jet penetration and to attempt a mechanistic explanation. A different behavior has been recorded in the skin with interesting findings for subcutaneous and/or dermal delivery. Peculiar features with respect to existing jet injectors confers to this device good potentiality for a future clinical application. (C) 2015 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据