4.6 Article

Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 577, 期 1, 页码 433-443

出版社

WILEY
DOI: 10.1113/jphysiol.2006.115436

关键词

-

向作者/读者索取更多资源

We have examined the effects of administration of testosterone for 7 days on monocarboxylate transporter (MCT) 1 and MCT4 mRNAs and proteins in seven metabolically heterogeneous rat hindlimb muscles and in the heart. In addition, we also examined the effects of testosterone treatment on plasmalemmal MCT1 and MCT4, and lactate transport into giant sarcolemmal vesicles prepared from red and white hindlimb muscles and the heart. Testosterone did not alter MCT1 or MCT4 mRNA, except in the plantaris muscle. Testosterone increased MCT1 (20%-77%, P < 0.05) and MCT4 protein (29%-110%, P < 0.05) in five out of seven muscles examined. In contrast, in the heart MCT1 protein was not increased (P > 0.05), and MCT 4 mRNA and protein were not detected. There was no correlation between the testosterone-induced increments in MCT1 and MCT4 proteins. Muscle fibre composition was not associated with testosterone-induced increments in MCT1 protein. In contrast, there was a strong positive relationship between the testosterone-induced increments in MCT4 protein and the fast-twitch fibre composition of rat muscles. Lactate transport into giant sarcolemmal vesicles was increased in red (23%, P < 0.05) and white muscles (21%, P < 0.05), and in the heart (58%, P < 0.05) of testosterone-treated animals (P < 0.05). However, plasmalemmal MCT1 protein (red, +40%, P < 0.05; white, +39%, P < 0.05) and plasmalemmal MCT4 protein (red, +25%, P < 0.05; white, +48%, P < 0.05) were increased only in skeletal muscle. In the heart, plasmalemmal MCT1 protein was reduced (-20%, P < 0.05). In conclusion, these studies have shown that testosterone induces an increase in both MCT1 and MCT4 proteins and their plasmalemmal content in skeletal muscle. However, the testosterone-induced effect was tissue-specific, as MCT1 protein expression was not altered in the heart. In the heart, the testosterone-induced increase in lactate transport cannot be explained by changes in plasmalemmal MCT1 content, but in skeletal muscle the increase in the rate of lactate transport was associated with increases in plasmalemmal MCT1 and MCT4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据