4.6 Article

The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 577, 期 1, 页码 155-167

出版社

WILEY
DOI: 10.1113/jphysiol.2006.117523

关键词

-

向作者/读者索取更多资源

Waves of spontaneous electrical activity that are highly synchronized across large populations of neurones occur throughout the developing mammalian central nervous system. The stages at which this activity occurs are tightly regulated to allow activity-dependent developmental programmes to be initiated correctly. What determines the onset and cessation of spontaneous synchronous activity (SSA) in a particular region of the nervous system, however, remains unclear. We have tested the hypothesis that activity itself triggers developmental changes in intrinsic and circuit properties that determine the stages at which SSA occurs. To do this we exposed cultured slices of mouse neocortex to tetrodotoxin (TTX) to block SSA, which normally occurs between embryonic day 17 (E17) and postnatal day 3 (P3). In control cultured slices, SSA rarely occurs after P3. In TTX-treated slices, however, SSA was generated from P3 (the day of TTX removal) until at least P10. This indicates that in the absence of spontaneous activity, the mechanisms that normally determine the timing of SSA are not initiated, and that a compensatory response occurs that shifts the time of SSA occurrence to later developmental stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据