4.7 Article

Involvement of Na+/K+-ATPase in hydrogen peroxide-induced hypertrophy in cardiac myocytes

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 41, 期 10, 页码 1548-1556

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2006.08.018

关键词

ROS; Na+/K+-ATPase; ouabain; cardiac myocytes; hypertrophy

资金

  1. NHLBI NIH HHS [HL-63238, HL-36573] Funding Source: Medline

向作者/读者索取更多资源

We have shown that increased production of reactive oxygen species (ROS) was required for ouabain-induced hypertrophy in cultured cardiac myocytes. In the present study we assessed whether long-term exposure of myocytes to nontoxic ROS stress alone is sufficient to induce hypertrophy. A moderate amount of H2O2 was continuously generated in culture media by glucose oxidase. This resulted in a steady increase in intracellular ROS in cultured cardiac myocytes for at least 12 h. Such sustained, but not transient, increase in intracellular ROS at a level comparable to that induced by ouabain was sufficient to stimulate protein synthesis, increase cell size, and change the expression of several hypertrophic marker genes. Like ouabain, glucose oxidase increased intracellular Ca2+ and activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2). These effects of glucose oxidase were additive to ouabain-induced cellular changes. Furthermore, glucose oxidase stimulated endocytosis of the plasma membrane Na+/K+-ATPase, resulting in significant inhibition of sodium pump activity. While inhibition of ERK1/2 abolished glucose oxidase-induced increases in protein synthesis, chelating intracellular Ca2+ by BAPTA-AM showed no effect. These results, taken together with our prior observations, suggest that ROS may cross talk with Na+/K+-ATPase, leading to the activation of hypertrophic pathways in cardiac myocytes. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据