4.6 Article

The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2357705

关键词

-

向作者/读者索取更多资源

An aqueous solution of carbon nanotubes, treated by a concentrated nitric/sulfuric acid mixture to disentangle the nanotubes, was utilized as the working medium in a two-phase closed thermosyphon to investigate its performance. In comparison with the thermosyphon filled with a distilled water medium, the one filled with carbon nanotube suspension has a high evaporation section wall temperature, incipience temperature, and excursion, as well as thermal resistance. The carbon nantotubes' nanofluid deteriorates the performance of the gravity-assisted heat pipe. Measurements employing the maximum bubble pressure method demonstrate that suspending carbon nanotubes in bulk water gives rise to increased surface tension. In addition, the contact angle of suspension obtained with the sessile drop method on a copper plate is much smaller than that of water. Alterations of solid-liquid-vapor interfacial properties, arising from the addition of carbon nanotubes, change the boiling mechanism and thus deteriorate the boiling heat transfer. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据