4.6 Article

Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 46, 页码 35520-35530

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M605167200

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM39040, R01 GM64584] Funding Source: Medline

向作者/读者索取更多资源

The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据