4.5 Article

Theoretical study on the reaction mechanism of CH4 with CaO

期刊

CHEMICAL PHYSICS
卷 330, 期 3, 页码 343-348

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemphys.2006.07.046

关键词

CaO; CH4; CH3OH; Ca; B3LYP

向作者/读者索取更多资源

The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH4 -> CaOCH4 -> [TS] -> CaOH + CH3, CaO + CH4 -> OCaCH4 -> [TS] -> HOCaCH3 -> CaOH + CH3 or [TS] -> CaCH3OH -> Ca + CH3OH, and OCaCH4 -> [TS] -> H CaOCH3 -> CaOCH3 + H or [TS] -> CaCH3OH -> Ca + CH3OH. The gas-phase methane-methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH3 and HCaOCH3, and the reaction pathway via the hydroxy intermediate (HOCaCH3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH3). The hydroxy intermediate HOCaCH3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH4. Meanwhile, these three product channels (CaOH + CH3, CaOCH3 + H and Ca + CH3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH3 and HOCaCH3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH3OH, which is precisely the reverse reaction of methane hydroxylation. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据