4.7 Article

On one-dimensional self-assembly of surfactant-coated nanoparticles

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2375091

关键词

-

向作者/读者索取更多资源

Nanometer-sized metal and semiconductor particles possess novel properties. To fully realize their potential, these nanoparticles need to be fabricated into ordered arrays or predesigned structures. A promising nanoparticle fabrication method is coupled surface passivation and self-assembly of surfactant-coated nanoparticles. Due to the empirical procedure and partially satisfactory results, this method still represents a major challenge to date and its refinement can benefit from fundamental understanding. Existing evidences suggest that the self-assembly of surfactant-coated nanoparticles is induced by surfactant-modified interparticle interactions and follows an intrinsic road map such that short one-dimensional (1D) chain arrays of nanoparticles occur first as a stable intermediate before further assembly takes place to form higher dimensional close-packed superlattices. Here we report a study employing fundamental analyses and Brownian dynamics simulations to elucidate the underlying pair interaction potential that drives the nanoparticle self-assembly via 1D arrays. We find that a pair potential which has a longer-ranged repulsion and reflects the effects of surfactant chain interdigitation on the dynamics is effective in producing and stabilizing nanoparticle chain arrays. The resultant potential energy surface is isotropic for dispersed nanoparticles but becomes anisotropic to favor the growth of linear chain arrays when self-assembly starts. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据