4.7 Review

Can the pH value of water solutions be estimated by quantum chemical calculations of small water clusters?

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2363383

关键词

-

向作者/读者索取更多资源

In the study, various water clusters were explored from the point of view of the proton transfer between H-bonded neighbors. A relatively modest approach-the MP2/6-31++G(d,p) level-was chosen as acceptable considering the fact that also larger systems have to be included. The tight ion-pair model (with usually three fixed O-O distances) was adopted for the autodissociation process. First, cluster-estimated pH values rapidly decrease as cluster size increases from 2 to 6. For larger clusters in gas phase, the topology of H bonds plays an important role, varying pH from 7 to 13 in hexamers and from 5 to 15 in octamer clusters. The relationship energy/distance was quantified, too. Enhancing our model with the conductorlike screening model (COSMO) approach brought significant improvement in description of the autodissociation reaction with a stable zwitterionic structure. However, when the O-O restrictions were released, the small barrier for backward reaction disappeared, reforming neutral cluster spontaneously. Also Boltzmann weighting procedure was applied, and for the explored clusters in vacuo, the series of pH 25-18-14-13-10 was obtained for cluster sizes n=2, 3, 4, 6, 8. Using the COSMO approach, the analogous series is 15-14-12-10-9. The limit of the series is still about two to three units above the experimentally known pH. In order to reach the size-independent (bulk) value, larger clusters are needed. However, the situation is far from hopeless since (as it was proven in the study) four-coordinated molecules are not involved in the proton transfer process directly; they can only be a part of the surrounding environment. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据