4.7 Review

Accurate fundamental parameters for lower main-sequence stars

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2006.10999.x

关键词

techniques : photometric; stars : atmospheres; stars : fundamental parameters; Hertzsprung-Russell ( HR) diagram; stars : late-type; infrared : stars

向作者/读者索取更多资源

We derive an empirical effective temperature and bolometric luminosity calibration for G and K dwarfs, by applying our own implementation of the Infrared Flux Method to multiband photometry. Our study is based on 104 stars for which we have excellent BV(RI)(C) JHK(S) photometry, excellent parallaxes and good metallicities. Colours computed from the most recent synthetic libraries (ATLAS9 and MARCS) are found to be in good agreement with the empirical colours in the optical bands, but some discrepancies still remain in the infrared. Synthetic and empirical bolometric corrections also show fair agreement. A careful comparison to temperatures, luminosities and angular diameters obtained with other methods in the literature shows that systematic effects still exist in the calibrations at the level of a few per cent. Our Infrared Flux Method temperature scale is 100-K hotter than recent analogous determinations in the literature, but is in agreement with spectroscopically calibrated temperature scales and fits well the colours of the Sun. Our angular diameters are typically 3 per cent smaller when compared to other (indirect) determinations of angular diameter for such stars, but are consistent with the limb-darkening corrected predictions of the latest 3D model atmospheres and also with the results of asteroseismology. Very tight empirical relations are derived for bolometric luminosity, effective temperature and angular diameter from photometric indices. We find that much of the discrepancy with other temperature scales and the uncertainties in the infrared synthetic colours arise from the uncertainties in the use of Vega as the flux calibrator. Angular diameter measurements for a well-chosen set of G and K dwarfs would go a long way to addressing this problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据