4.6 Article

Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces

期刊

LANGMUIR
卷 22, 期 24, 页码 10264-10271

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la061900h

关键词

-

向作者/读者索取更多资源

The electroosmotic behavior of the rutile polymorph of titanium dioxide was explored as a function of the crystallographic orientation. Atomic force microscopy (AFM) was employed to make high-resolution force spectroscopy measurements between a silica sphere attached to a traditional, contact-mode AFM cantilever and TiO2(110), TiO2(100), and TiO2(001) surfaces in aqueous solutions. Measurements were taken in multiple solution conditions across a broad range of pH values, and the resultant force-distance curves were used to deduce relative behaviors of each orientation of rutile, with particular interest in changes of the isoelectric point (iep). Differences in the iep as a function of orientation are explained in terms of differences in both the coordination number and density of acidic and basic sites on the surface. The results were supported by angle-resolved X-ray photoelectron spectroscopy (XPS) measurements of a nominal monolayer of palladium metal deposited on each of the three orientations studied. The palladium monolayer served as a means of probing the relative electron affinities of the three surfaces studied, which were exhibited in shifts of the palladium XPS peak that corresponded to differences in the binding energy as a function of the substrate orientation. The correlation between the rutile orientation and the shift in the palladium binding energy corresponded directly to the relationship between the isoelectric point and the orientation, with the surface of lowest isoelectric point exhibiting the highest Pd binding energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据