4.8 Article

Modular organization of finger movements by the human central nervous system

期刊

NEURON
卷 52, 期 4, 页码 731-742

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2006.09.038

关键词

-

向作者/读者索取更多资源

The motor system may generate automated movements, such as walking, by combining modular spinal motor synergies. However, it remains unknown whether a modular neuronal architecture is sufficient to generate the unique flexibility of human finger movements, which rely on cortical structures. Here we show that finger movements evoked by transcranial magnetic stimulation (TMS) of the primary motor cortex reproduced distinctive features of the spatial representation of voluntary movements as identified in previous neurolmaging studies, consistent with naturalistic activation of neuronal elements. Principal component analysis revealed that the dimensionality of TMS-evoked movements was low. Principal components extracted from TMS-induced finger movements resembled those derived from end-postures of voluntary movements performed to grasp imagined objects, and a small subset of them was sufficient to reconstruct these movements with remarkable fidelity. The motor system may coordinate even the most dexterous movements by using a modular architecture involving cortical components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据