4.6 Article

Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays

期刊

APPLIED PHYSICS LETTERS
卷 89, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2397008

关键词

-

向作者/读者索取更多资源

This letter reports on fast and highly anisotropic thermal transport through millimeter-tall, vertically aligned carbon nanotube arrays (VANTAs) synthesized by chemical vapor deposition on Si substrates. Thermal diffusivity measurements were performed for both longitudinal and transverse to the nanotube alignment direction, with longitudinal values as large as 2.1 +/- 0.2 cm(2)/s and anisotropy ratios as large as 72. Longitudinal thermal conductivities of 15.3 +/- 1.8 W/(m K) for porous 8 +/- 1 vol % VANTAs in air and 5.5 +/- 0.7 W/(m K) for epoxy-infiltrated VANTAs already exceed those of phase-changing thermal interface materials used in microelectronics. Data suggest that further improvements are possible through optimization of density and defects in the arrays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据