4.7 Article

Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2393240

关键词

-

向作者/读者索取更多资源

It is shown that a long, near microsecond, atomistic simulation can shed some light upon the dynamical processes occurring in a lipid bilayer. The analysis focuses on reorientational dynamics of the chains and lateral diffusion of lipids. It is shown that the reorientational correlation functions exhibits an algebraic decay (rather than exponential) for several orders of magnitude in time. The calculated nuclear magnetic resonance relaxation rates agree with experiments for carbons at the C7 position while there are some differences for C3. Lateral diffusion can be divided into two stages. In a first stage occurring at short times, t < 5 ns, the center of mass of the lipid moves due to conformational changes of the chains while the headgroup position remains relatively fixed. In this stage, the center of mass can move up to similar to 0.8 nm. The fitted short-time diffusion coefficient is D-1=13x10(-7) cm(2) s(-1) On a longer time scale, the diffusion coefficient becomes D-2=0.79x10(-7) cm(2) s(-1). (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据