4.7 Article

Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors

期刊

JOURNAL OF NEUROSCIENCE
卷 26, 期 48, 页码 12602-12608

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4020-06.2006

关键词

GPCR; GIRK channels; metabotropic; diffusion; mu-opioid receptor; G-protein

资金

  1. NINDS NIH HHS [NS36455, R29 NS036455, F30 NS052070, NS052070, R01 NS036455] Funding Source: Medline

向作者/读者索取更多资源

G-protein-coupled receptors (GPCRs) mediate slow synaptic transmission and many other effects of small molecule and peptide neurotransmitters. In the standard model of GPCR signaling, receptors and G-proteins diffuse laterally within the plane of the plasma membrane and encounter each other by random collision. This model predicts that signaling will be most efficient if both GPCRs and G-proteins are free to diffuse, thus maximizing collision frequency. However, neuronal GPCRs are often recruited to and enriched at specific synaptic locations, suggesting receptor mobility is restricted in these cells. Here, we test the hypothesis that restricting GPCR mobility impairs signaling in neurons by limiting the frequency of collisions between receptors and G- proteins. mu-Opioid receptors (MORs) were immobilized on the surface of cerebellar granule neurons by avidin-mediated cross-linking, and inwardly rectifying potassium (GIRK) channels were used as rapid indicators of G- protein activation. Mobile and immobile MORs activated GIRK channels with the same onset kinetics and agonist sensitivity in these neurons. In a heterologous expression system, GFP (green fluorescent protein)-tagged G alpha(oA) subunits remained mobile after cross-linking, but their mobility was reduced in the presence of immobile MORs, suggesting that these receptors and subunits were transiently precoupled. In addition, channel activation could be reconstituted with immobile GPCRs, G-protein heterotrimers, and GIRK channels. These results show that collision frequency is not rate-limiting for G-protein activation in CNS neurons, and are consistent with the idea that signaling components are compartmentalized or preassembled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据