4.4 Review

Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis

期刊

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
卷 5, 期 12, 页码 1109-1120

出版社

SPRINGERNATURE
DOI: 10.1039/b610236k

关键词

-

向作者/读者索取更多资源

Haem proteins have long been the most studied proteins in biophysics, and have become paradigms for the characterization of fundamental biomolecular processes as ligand binding and regulatory conformational transitions. The presence of the haem prosthetic group, the absorbance spectrum of which has a ligation sensitive region conveniently located in the UV-visible range, has offered a powerful and sensitive tool for the investigation of molecular functions. The central Fe atom is capable of reversibly binding diatomic ligands, including O-2, CO, and NO. The Fe-ligand bond is photolabile, and a reactive unligated state can be transiently generated with a pulsed laser. The photodissociated ligands quickly rebind to the haem and the process can be monitored by transient absorbance methods. The ligand rebinding kinetics reflects protein dynamics and ligand migration within the protein inner cavities. The characterization of these processes was done in the past mainly by low temperature experiments. The use of silica gets to trap proteins allows the characterization of internal ligand dynamics at room temperature. In order to show the potential of the laser flash photolysis techniques, combined with modern numerical analysis methods, we report experiments conducted on two non-symbiotic haemoglobins from Arabidopsis thaliana. The comparison between time courses recorded on haemoglobins in solution and encapsulated in silica gels allows for the highlighting of different interplays between protein dynamics and ligand migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据