4.6 Article

Atomistic simulations of the mechanical behavior of fivefold twinned nanowires

期刊

PHYSICAL REVIEW B
卷 74, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.214108

关键词

-

向作者/读者索取更多资源

Atomistic simulations are used to investigate the mechanical behavior of metal nanowire with fivefold twinned structure. The twinned nanowires were reported in recent experiments [B. Wu et al., Nano Lett. 6, 468 (2006)]. In the present paper, we find that the yield strength of the fivefold twinned Cu nanowire is 1.3 GPa higher than that of the face-centered-cubic (fcc) < 110 > single crystalline Cu nanowire without fivefold twinned structure, and the microstructure-hardened mechanism is primarily due to the twinned boundaries which act as the barriers for the dislocation emission and propagation. However, we also find that the fivefold twinned Cu nanowire has lower ductility than that of fcc < 110 > single crystalline Cu nanowire without the twinned structure, and this is mainly attributed to the scarcity and low mobility of dislocations. In addition, in our simulations the effect of preexisting stacking faults and dislocations on strength of the fivefold twinned nanowires is investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据