4.6 Review

Allosteric disulfide bonds in thrombosis and thrombolysis

期刊

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
卷 4, 期 12, 页码 2533-2541

出版社

WILEY
DOI: 10.1111/j.1538-7836.2006.02236.x

关键词

glycoprotein 1b alpha; integrin beta(3); plasminogen; thrombomodulin; tissue factor; vitronectin

向作者/读者索取更多资源

Allosteric disulfide bonds control protein function by mediating conformational change when they undergo reduction or oxidation. The known allosteric disulfide bonds are characterized by a particular bond geometry, the -RHStaple. A number of thrombosis and thrombolysis proteins contain one or more disulfide bonds of this type. Tissue factor (TF) was the first hemostasis protein shown to be controlled by an allosteric disulfide bond, the Cys186-Cys209 bond in the membrane-proximal fibronectin type III domain. TF exists in three forms on the cell surface: a cryptic form that is inert, a coagulant form that rapidly binds factor VIIa to initiate coagulation, and a signaling form that binds FVIIa and cleaves protease-activated receptor 2, which functions in inflammation, tumor progression and angiogenesis. Reduction and oxidation of the Cys186-Cys209 disulfide bond is central to the transition between the three forms of TF. The redox state of the bond appears to be controlled by protein disulfide isomerase and NO. Plasmin(ogen), vitronectin, glycoprotein 1b alpha, integrin beta(3) and thrombomodulin also contain -RHStaple disulfides, and there is circumstantial evidence that the function of these proteins may involve cleavage/formation of these disulfide bonds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据